<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=350476566337084&amp;ev=PageView&amp;noscript=1">
EMD (Enhanced Materials Division)

Enhanced Materials Division (EMD)

Get in Touch

Contact Us

Go here to request a quote or for general questions (document requests, billing inquiries, etc.).
Reach Out

Ask the Expert

Have a material or application question for our engineering team? Go here.
Ask Away

Let's Go Paperless

In an effort to save time, paper and postage please sign up for our paperless invoicing and payments.
Sign Up
3 min read

Food Processing and Packaging: Industry Overview

By Dave Biering on July 27, 2020

food processing and packaging - industry overview

In this brief overview of food processing and packaging, we take a look at:

  • Defining the size of the food processing and packaging industry.
  • Looking at key growth drivers.
  • Examining competitive pressures that drive a continued need for efficient manufacturing.

For a look at which activities are included under processing (from pickling to high-pressure cooking) and packaging (from canning to modified atmosphere) take a look at our blog post here.

For some of the facts and figures below, this article draws on McKinsey’s 2018 industry white paper, available here. We recommend it for a more exhaustive exploration of the topics we highlight below.

What companies are included in the Food Processing and Packaging Industry?

This industry traditionally includes the production of a variety of equipment for both food processing and packaging tasks. Many analysts also include commercial foodservice preparation equipment (like commercial-grade ovens).

The most important companies not included in this industry are agricultural firms (part of the Agriculture Industry) and restaurants, which are considered Food Service Industry companies. While food is being grown at the farm, harvested/washed, and prepared for initial storage (eg. flash-freezing vegetables at the farm) it is still within the Agriculture Industry. Once the food has entered a production facility, however, it’s within the domain of Food Processing and Packaging.

How big is the Food Processing and Packaging Industry?

Defining the size of this industry can be a complicated question, and analyst estimates vary widely.

Because many companies blur the line between agriculture and food processing, focusing on the market for Food Processing and Packaging Equipment is the easiest way to separate processing and packaging activity from the broader food/agriculture sector.

As of 2018, the management consulting firm McKinsey values the sector at ~$100 billion (including three sub-sectors: processing ($45 billion), packaging ($37 billion), and commercial food service equipment ($16 billion)).

McKinsey also notes that, by most metrics, this industry has lead industrial firms across several key financial performance metrics over the past decade, including profit per $ of revenue, total return to shareholder, and EBITA margin.

A Growing Industry for a Hungry Globe

McKinsey identifies several key factors driving growing revenue and profit margins:

  • Overall emerging-market population growth is fueling overall demand. Within these emerging markets, urbanization is pushing incomes higher, increasing food consumption per capita as well. Asia, for instance, is expected to account for 50 percent of growth for industry demand through 2021.
  • Rising income and increasing food consumption in emerging markets also changes the types of foods consumed, with richer consumers buying fewer commodity staples and more value-added food products (like meat, dairy, and packaged foods).
  • A rising consumer preference for healthy, organic food is driving menu expansion, more rigorous quality standards, and a shift toward higher-margin products. This trend also means new types of equipment for food production, higher-standard machines, and the proliferation of specialized systems like RFIT labeling for better traceability.

A Competitive Space Requiring Efficient Equipment and Ambitious Automation

Despite all this growth, the food processing and packaging industry companies face an eternal challenge: hungry end-consumers who won’t easily tolerate higher prices.

This strategic environment puts pressure on food companies to pursue a continuous push for more efficient production that automates as much of food processing as possible. McKinsey notes that increasing labor costs, tightening immigration policy in the U.S., and low industrial labor retention rates are all contributing to a push for more automation. And that means more advanced machinery.

Manufacturers in the food and beverage industry need equipment that can offer improved efficiency, lower cost, and better uptime.

Equipment downtime can be costly in any industry. Studies suggest a single hour of downtime cost 98% of businesses (across all industries) at least $100,000. For 33% of firms, those costs fall in the $1-5 million range. For food companies, these costs tend to run toward the higher end: the ever-present risk of spoilage means potential costs of downtime go far beyond production delays.

Learning More

If you’re interested in learning more about key 2020 trends for the broader food industry, take a look at our blog post here.

For a deeper dive into the industry (with a more specific look at using advanced materials to solve key food production issues) please see our white paper here.

Food and Beverage Industry: Challenges for Processing, Packaging, and Beyond

Topics: Food food bearings
5 min read

Important Processes for Food Processing and Packaging

By Dave Biering on July 24, 2020

important processes for food processing and packaging

Food processing is a science-driven industry that demands extensive knowledge of chemistry, microbiology, and the physical properties of various foods and agricultural products. It also requires the ability to engineer equipment capable of processing and packaging this food at volume.

For an overview of the Food Processing and Packaging Industry, please see our blog post here. In this article, we highlight some of the most prominent techniques used in food processing and packaging.

Traditional Food Processing Methods Still in Use Today

Food processing is one of the oldest industries on earth: as long as humans have produced food, we have needed methods to process it for optimized nutrition, longer storage life, and improved flavor. Some of the most fundamental food processing methods can be found anywhere from an open campfire to an industrial scale processing facility.

  • Cooking is the most ubiquitous form of processing. Heat is applied through various methods like baking, grilling, roasting, and frying. All of these processes require materials that can stand up the varying degrees of heat without degrading or releasing toxic material into food.
  • Drying is one of the oldest methods for preserving food. While sun-drying has been used for thousands of years, modern plants employ techniques like freeze-drying (see below).
  • Smoking is another simple but effective method for preserving a wide variety of foods. Industrial-scale smoking involves massive smoking chambers that can handle large quantities of food at once.
  • Fermentation is a chemical process caused by bacteria and other microorganisms like yeasts in anaerobic (no oxygen) environments. In addition to its famous use for alcoholic beverages, fermentation is used to make products like sauerkraut, yogurts, and bread yeast.
  • Pickling: this process can refer to either brine or vinegar immersion. The key feature of this process is a pH sufficient to kill most bacteria. In traditional pickling, antimicrobial herbs like mustard seed and garlic can also be added to the mix. Brine also draws out moisture from food, enhancing preservation. Pickling has been in use at least since the Indus Valley civilization around 2400 BC.
  • Salting/Curing: this process works similarly to pickle brine, but uses dry salt, typically on meats. Salting was the main method for preserving meats until the advent of refrigeration. Salt draws water out of the meat to dramatically reduce spoilage.

While these techniques are still used (in a highly advanced and scaled-up form) in industrial-scale food processing, today’s food processing companies have also created completely novel processes.

Advanced Food Processing Methods

Some versions of industrial food processing (like conveyorized ovens) are simply larger-scale versions of traditional food processing techniques. But the technologies available to industrial-scale food processors have also opened entirely new avenues for food processing.

  • Freezing, Flash Freezing, and Freeze Drying: freezing dramatically improves freshness and shelf-life for a huge variety of foods, and techniques like flash-freezing help prep food at mass-production speeds and volumes.
  • Irradiation: exposing food to ionizing radiation can improve food safety, delay the sprouting of plant products, and help control insects and other pests.
  • Pasteurization: in this technique, invented by Louis Pasteur in 1864, food is rapidly heated and then cooled, a reliable method for killing potentially harmful microorganisms.
  • High-Pressure Processing: sometimes called Pascalization, this process processes food in high-pressure conditions which kill many bacteria types, improving safety and shelf life. This process is desirable for its energy efficiency, decreased processing time, and the absence of additives. This relatively new process was invented starting being used commercially in the 1990’s and is still being perfected.
  • Extrusion: mixed ingredients are forced through an opening to form a continuous shape that can subsequently be cut into a specific size by a blade. This method allows for efficient mass production of food that can be easily cut to size after it is produced.
  • Modified Atmosphere Packaging: air inside a package can be substituted with a special gas mix designed to slow spoilage, extend shelf-life, and improve food safety.
  • Chemical Additives: In addition to vitamins, antioxidants help prevent oil from going rancid. Emulsifiers can help products like salad dressing from separating into oil and water in the package.

Food Processing Equipment Examples

All of the processes above require specialized equipment. And food needs to be carefully cleaned, prepared, and packaged based on how a food product is processed -- each of these tasks creates even more equipment needs.

Below we list just a few of the massive array of highly-specialized machinery used in food processing. For a more exhaustive treatment, we recommend this resource.

  • Cleaning: Sprayers, Ultrasonic Cleaners, Magnetic Separators
  • Grading Equipment: lab-like equipment to test food quality.
  • Preparation: rollers, peelers (blade/steam/flame), sorting equipment
  • Mechanical processing: mills, crushers, strainers, pulpers, slicers, grinders, and saws.
  • Extruding Equipment
  • Agglomeration Equipment: Pelletizers, Rotating Drums, and High-Speed Agitators
  • Forming Equipment: Molders, Formers, and Enrobing Machines
  • Mixers: paddle, turbine, anchor, and agitated tank mixers.

Food Packaging Examples and Equipment

The types of packaging used for food are nearly as diverse as the food itself. A few prominent examples include trays, bags, cans, coated paper cans, pallets, and plastic wrap.

For many food products, multiple packaging techniques will be required for each salable item, like a frozen meal with a tray, plastic wrap cover, and outer box (and that means multiple pieces of packaging machinery for just one production line). To package processed food at an industrial scale, food companies utilize a wide variety of specialized equipment. Just a few important examples include:

  • Vacuum-packaging machines remove air from plastic packaging to reduce atmospheric oxygen, limiting microbe growth and evaporation to improve shelf-life.
  • Cartoning machines that automatically fold paper cartons, applying adhesive as necessary. 
  • Coding and labeling machines to not only apply repetitive graphics like marketing labels but autocode information that is essential for tracking food freshness.
  • Filling and bottling machines for beverages and other liquid products.
  • Capping machines to seal and cap bottled liquids.

Learning More

A single food production facility may need to employ many of the machines highlighted above in just a single production line. Food producers face the challenge of keeping all of this equipment up and running in a manufacturing environment with some unique challenges:

  • A heightened need for clean operation.
  • A wide variety of temperature conditions: food might be fried and frozen even on the same production line.
  • A high-margin, high production volume industry where machine downtime comes with serious costs.
  • A number of food materials generate abrasive particulate matters that can damage materials made from the wrong materials.

For a more specific look at challenges for food processing and packaging equipment (and how the right material selection can help) we recommend our white paper.

Food and Beverage Industry: Challenges for Processing, Packaging, and Beyond

Topics: Food food bearings
4 min read

Food and Beverage Industry Trends 2020: Convenience, Plant-Based Proteins, and More

By Dave Biering on July 22, 2020

food and beverage Industry trends - convenience, plant-based proteins

Major food trends have implications for a cluster of related industries. For instance, the rise of plant-based food affects not only restaurants and meat substitute manufacturers but a much broader set of companies.

From the agricultural operations where raw inputs are grown to the processing facilities where food is produced and packaged, new trends create new challenges for companies throughout the supply chain.

Meanwhile, food companies continue to face a manufacturing environment full of caustic chemicals, clean operation requirements, and abrasive food materials. Food processing and packaging equipment manufacturers are always looking for ways to improve performance, reliability, and uptime in the face of diverse food production challenges.

In this post, we take a look at some of the most important food industry trends for 2020.

Or for an overview of food processing and packaging (including what companies fall under this category), take a look at our blog post here.

If you’re looking for a deeper look at food processing and packaging, we recommend our whitepaper here.

Plant-Based Food: Burgers and Beyond

Plant-based hamburgers are a great symbol of continued product innovation in this industry. And burgers are just the beginning of a dramatic explosion in plant-based food that has only begun to reshape the marketplace. Plant-based burgers and ground beef are already available everywhere from fine-dining to fast food. But the industry has only begun exploring plant-based alternatives for animal products like fish, chicken, pork, eggs, and dairy. Even KFC is getting in on the trend.

The move toward plant-based products will have dramatic implications for the entire food industry supply chain. For example, the plant-based meat substitute trend is already driving an explosion of pea production: peas are becoming a popular alternative to soy as a source for plant-based proteins. A single shift like this one means different farms, different food packaging and processing needs, and different machinery.

Food and Beverage companies face the challenge of maintaining efficient production of price-sensitive products even as they adapt their supply chains for new consumer tastes.

The Digital Revolution Comes to Food and Beverage: Big Data and Online Delivery

The food-focused marketing agency Quench provides an excellent deep dive into major industry trends heading into 2020. Highlights include:

  • Hyper-customizable food to reflect a growing awareness of personal allergen- and nutrient-related needs. Personalized, data-driven food delivery applications range from the common sense (avoiding food allergies) to applications that wouldn’t surprise us in a science fiction movie. For example, Sushi Singularity is a restaurant concept where personal biodata will be used to create 3D-printed sushi dishes.

  • Data-rich supply chains allow for much more granular tracking of food from production to packaging, essential for promoting better food-safety. Superior tracking also helps prevent supplier fraud (like passing off non-organic agricultural products as organic or lying about freshness). Better tracking also allows consumers to have more precise information about where their food comes from.

  • A growth in online-driven food delivery is only beginning to shakeup how food products are distributed (with potential implications for everything from restaurants to packaging design). Food delivery app downloads were already up 380 percent over the past three years before the COVID crisis hit.

    While the initial move to home food delivery has generally centered on apps that allow customers to order food from a physical restaurant, this model has the potential to shake up the food supply chain more dramatically. For example, more and more companies are exploring the concept of a “ghost kitchen” (a non-dine-in location that makes food solely for delivery). These locations will make it easier to flexibly accommodate demand in areas with high amounts of delivery orders.

A Move Toward Convenient Food

Consumers in developed economies have long shown an increasing preference for “convenient” food options, like frozen food or pre-packaged fresh meals. This also includes an increase in restaurant meals (the BLS reports Millenials spend 46% of their food dollars eating out compared to 41% for Baby Boomers).

This trend has many implications for food companies throughout the supply chain, even packaging. For example, McKinsey reports it is driving a boost in demand for trays made from plastics that allow for direct cooking/warming. These flexible packaging options (eg. plastic containers that can be used for different types of fresh, convenient food products) are growing at the expense of traditional packaging formats like glass jars and metal cans.

Inside the Production Plant: Challenges for Food Processing and Packaging Equipment

Food companies face the need to adapt to these changes in a competitive market that demands highly-efficient, high-volume production wherever possible. Food processing and packaging equipment need to achieve optimal uptime and have to do so while facing unique manufacturing challenges. As equipment makers design machines for the next generation of food products, these key operational challenges will remain as relevant as ever.

Key Challenges for Food Processing and Packaging Equipment

  • Food materials like beans and dry cereals can be highly abrasive to machinery over time. Abrasion can cause premature part failure (resulting in both elevated maintenance costs and more stoppages).
  • Food processing equipment requires regular cleaning using FDA-certified processes and chemicals. In many cases, these chemicals are highly caustic, and can potentially degrade mechanical components made from the wrong materials.
  • Food processing and packaging plants require unusually clean operation for a manufacturing facility. This requirement can create challenges for component selection. For instance, parts requiring high amounts of grease present a chronic contamination risk when used in food processing equipment.

Learning More

In our experience, the right materials for vital engineered components like bearings is essential to maximizing performance and uptime for business-critical food processing and packaging equipment.

For a deeper look at manufacturing challenges for the bearing industry and how solutions like self-lubricating polymer components can help solve them, you can download our free industry white paper by clicking on the graphic below.

Food and Beverage Industry: Challenges for Processing, Packaging, and Beyond

Topics: Food food bearings
2 min read

Food Bearings for Peanut Processing: Solving a Lubrication Challenge

By Dave Biering on July 25, 2017

Food Bearings for Peanut Processing: Solving a Lubrication Challenge

Thanks for your feedback to our recent post about food bearings and the Food Safety Modernization Act. It’s a topic that has some serious implications for manufacturers, and we’ll continue to follow new developments. Today we turn to solving the challenges involved in peanut processing, which is a particularly tough environment for lubricated bearings.

Peanuts, almonds, pistachios; no matter the nut application, the cracking and husking process generates volumes of dust. This poses a real challenge with lubricated metal bearings, as the lubricating grease acts as a magnet and attracts fine peanut dust. Over time, the dust can thicken into layers, and will interfere with the clearance between the bearing and the shaft. Without proper clearance, bearings stop rolling and processing equipment can seize up.

We recently worked with a major peanut manufacturer to retrofit several pieces of their processing equipment to avoid this challenge; and the answer was self-lubricating bearings. Self-lubricating bearings excel in environments with high dust, as there is no excess grease build-up (or lapping compound). Self-lubricating plastic food bearings run cleaner than metals, and will not attract environmental dust.

Solutions included Ertalyte TX and Ceram P on the impact plates of the nut cracking station. Ertalyte is known for its excellent wear and abrasion resistance, plus high mechanical strength. The material gives superior lubricity, without the need for additional greasing. It also excels has good release properties for use in food applications with sticky ingredients like pasta.

Ceram P and Rulon were also used on areas like nut processing trays and equipment brake pads. View the Rulon Comparison Chart to learn about food-grade formulas. By combining a variety of food bearing types, we were able to meet the needs of this high-velocity and high-impact processing application.

This application is a good example of the need to look at each piece of processing equipment individually. Often, the best solution is a combination of food bearings shapes with distinct properties to achieve the best fit. We recommend that you partner with a food bearing manufacturer with both in-stock and custom bearing options for speedy delivery.

Want to learn more? Let’s talk about your food bearing needs!

New Call-to-action

Topics: food bearings