<img height="1" width="1" style="display:none;" src="https://www.facebook.com/tr?id=350476566337084&amp;ev=PageView&amp;noscript=1">

Bearing Materials

TriStar offers a wide range of bearing materials that are ideal for non-lubricated, high-load applications.

Saint Gobain Materials

TriStar is the exclusive partner of Saint Gobain for Rulon materials in North America. 

Materials and Fabrication

Our capabilities include component design, material selection, prototype, production, and manufacturing.

Materials Database

Use our interactive database to search for and compare over 450 materials.

mega-menu-db-button

Surface Modification

Learn how our Enhanced Materials Divison (EMD) modifies existing materials to meet specific needs.

mega-menu-emd-button

Industries

Since 1982 we have been combining the skills of TriStar’s engineering team, our extensive product line, and our deep understanding of a broad range of industries to bring you solutions to your most challenging engineering needs.

Problems / Solutions

Explore the common causes of bearing failure and learn how advanced polymer and composite bearings can address them.

Application Case Studies

Enhanced Materials Division (EMD)

EMD  positions TriStar Plastics as the leading resource to solve your demanding engineering material challenges.

Enhanced Materials Division (EMD)

Actions

View our library of engineering worksheets — the quickest way to communicate your project specs — or reach out to our engineering team.

Tools

Here are a few of our most popular online engineering tools - including our PV calc and material database (450+ materials).

mega-cta-advantage

Technical Library

Our collection of case studies, product specs, brochures and other key technical documents.

Free White Papers

Our library of free-to-download white papers focus on industry-based solutions, specific materials, bearing design, and more...

All White Papers

Industry Deep Dives

These pillar pages provide in-depth information on bearings and problem/solutions for specific industires.

More Resources

Our popular resources, including our monthly newsletters, blog, and our video library.

About Us

TriStar Plastics Corp. provides engineering, custom fabrication and manufacturing of high-performance plastics and self-lubricating bearing materials. 

Employment

We're dedicated to building a company where opportunities exist for talented people to achieve their maximum potential.

More...

Additional company resources, including info about our quality program and forms for signing up for e-invoicing and e-payments.

Contact Us

Go here to request a quote or for general questions (document requests, billing inquiries, etc.).

mega-menu-contact-button

Ask the Expert

Have a material or application question for our engineering team? Want to send us a file for review? Go here.

mega-menu-expert-button

Let's Go Paperless

In an effort to save time, paper and postage please sign up for our paperless invoicing and payments.

mega-menu-paperless-button

3 min read

Thermoset vs Thermoplastic Materials: Bearings and Other Applications

June 30, 2020

Polyethylene Plastic Molecule - A Thermoplastic

Thermoset and Thermoplastic materials have similar names, but they have very different properties. In this post, we provide an overview of what makes these two categories different and why these differences matter for different applications.

What is the difference between thermoset and thermoplastic bearings?

The primary difference between these two bearing materials is that thermoset plastics retain their solid state indefinitely, and include just a few trade names. Thermoplastic bearing materials can be heated and reheated many times to form new shapes.

Thermoplastics are the largest groups of plastics and include PVC, PEEK, polyethylene, nylon, acetal, and acrylic. Thermoplastics are particularly good for machining into custom fabricated components (explore The Essential Guide To Machining Plastics).

We explore the key differences in more detail below.

Thermoset v Thermoplastic | Remolding Properties

Thermoset: Synthetic materials that are not able to be reheated or remolded.

Thermoplastic: This is the largest group of plastics (polymers) and the group is also known as “thermosoftening” plastics given their ability to melt at high temperatures.

Thermoset v Thermoplastic | Heat Resistance

Thermoset: As it cures, the material increases in its ability to resist heat and succeed in high-heat applications (approaching 400°F or more).

Thermoplastic: Readily liquefies upon reaching melting points. The material also hardens and strengthens after cooling.

Thermoset v Thermoplastic | Chemical Characteristics

Thermoset: This category often incorporates fillers. When heated, the material’s molecules begin to crosslink, which helps to determine final strength and other characteristics. However, some of these materials also have a tendency to shatter under certain circumstances.

Thermoplastic: Provides good chemical resistance (will re-form without any chemical changes), but keep in mind that material properties will deteriorate if over-processed. Thermoplastics offer good impact-resistance as compared to thermoset plastics, and are also easily recycled.

Thermoset v Thermoplastic | Machining

Thermoset: Some of these materials are brittle and chip easily, making them hard to machine into custom parts. Other thermosets with fillers and fibers are easier to machine and produce very clean finished parts.

Thermoplastic: Are stronger and well-suited to machining techniques – as long as proper heat controls are followed. Get the Machining Slide Deck to review heating and cooling guidelines.

Examples of Thermoplastics and Thermosetting Plastics

Thermoset: Common formulas include Phenolic, Epoxy, PTFE, Ultracomp, CJ, Micartas, Melamine and some grades of imides.

Thermoplastic: This group includes both trade and generic names, representing Acetal, ABS, nylon, polyethelene, PET and PBT.

The different properties of thermoset plastics and thermoplastics have vital implications for your design, whether used as a bearing or in a different application. But this basic material difference is only one of many factors that need to be carefully considered. We always recommend approaching materials selection as a strategic engineering decision, not a box to be checked.

You can connect with our polymer experts here to discuss the right material for your design.

Custom Plastic Fabrication: Get the Guide!

Dave Biering

Written by Dave Biering

Featured