<img height="1" width="1" style="display:none;" src="https://www.facebook.com/tr?id=350476566337084&amp;ev=PageView&amp;noscript=1">

Bearing Materials

TriStar offers a wide range of bearing materials that are ideal for non-lubricated, high-load applications.

Saint Gobain Materials

TriStar is the exclusive partner of Saint Gobain for Rulon materials in North America. 

Materials and Fabrication

Our capabilities include component design, material selection, prototype, production, and manufacturing.

Materials Database

Use our interactive database to search for and compare over 450 materials.


Surface Modification

Learn how our Enhanced Materials Divison (EMD) modifies existing materials to meet specific needs.



Since 1982 we have been combining the skills of TriStar’s engineering team, our extensive product line, and our deep understanding of a broad range of industries to bring you solutions to your most challenging engineering needs.

Problems / Solutions

Explore the common causes of bearing failure and learn how advanced polymer and composite bearings can address them.

Application Case Studies

Enhanced Materials Division (EMD)

EMD  positions TriStar Plastics as the leading resource to solve your demanding engineering material challenges.

Enhanced Materials Division (EMD)


View our library of engineering worksheets — the quickest way to communicate your project specs — or reach out to our engineering team.


Here are a few of our most popular online engineering tools - including our PV calc and material database (450+ materials).


Technical Library

Our collection of case studies, product specs, brochures and other key technical documents.

Free White Papers

Our library of free-to-download white papers focus on industry-based solutions, specific materials, bearing design, and more...

All White Papers

Industry Deep Dives

These pillar pages provide in-depth information on bearings and problem/solutions for specific industires.

All Pillar Pages

More Resources

Our popular resources, including our monthly newsletters, blog, and our video library.

Education Overview

About Us

TriStar Plastics Corp. provides engineering, custom fabrication and manufacturing of high-performance plastics and self-lubricating bearing materials. 


We're dedicated to building a company where opportunities exist for talented people to achieve their maximum potential.


Additional company resources, including info about our quality program and forms for signing up for e-invoicing and e-payments.

Contact Us

Go here to request a quote or for general questions (document requests, billing inquiries, etc.).


Ask the Expert

Have a material or application question for our engineering team? Want to send us a file for review? Go here.


Let's Go Paperless

In an effort to save time, paper and postage please sign up for our paperless invoicing and payments.


2 min read

Engineering Plastics Against Steel – Coefficient of Friction

April 28, 2016


Guest Blogger - Quadrant Plastics

The first step to understanding the Coefficient of Friction (COF) of engineering plastics when compared to that of steel is grasping that the COF is not based on a material’s property alone, but is rather a system’s property. One part/piece/component does not make a system and therefore requires the evaluation of the total solution.

The values for the COF of engineering plastics can be used for comparative purposes in helping the design engineer in selecting the appropriate material option for the intended application. The main parameters that affect the COF in the evaluation and selection of engineering plastics are:

  • pressure
  • relative sliding velocity
  • geometry of the parts in contact
  • temperature
  • nature, roughness and hardness of the steel mating surface
  • total operating time
  • nature of any intermediate medium, e.g. water, lubricants, abrasive particles
  • specific properties of the plastics material

This data has been determined on a specific tribological device under a set of standard laboratory conditions, and should not be used to predict the frictional behavior of the materials under real service conditions which may very well be quite different than those used in our laboratory tests.

Please also note that the values for the COF of Quadrant’s engineering plastics provided in our technical literature should not be compared with other brands of engineering plastics as they were likely tested under a completely different set of test conditions which may result in values that are lower or higher than our published values. You can count on Quadrant’s material data to be accurate for the FINISHED material and not pre-manufacturing resin data.

Quadrant always recommends that the user run a practical test under real service conditions in order to determine the actual COF and performance of an engineering plastic and/or to compare different engineering plastics in an application.  

For detailed information on the COF of Quadrant’s engineering plastics, please get in touch with the bearing experts. Visit TriStar's Video Learning Center to learn more about several of the most popular Quadrant materials.

Jim Hebel

Written by Jim Hebel